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Modern debate regarding the extinction of non-
avian dinosaurs was ignited by the publication
of the Cretaceous-Tertiary (K-T) asteroid
impact theory and has seen 30 years of dispute
over the position of the stratigraphically youngest
in situ dinosaur. A zone devoid of dinosaur fossils
reported from the last 3 m of the Upper Cretac-
eous, coined the ‘3m gap’, has helped drive
controversy. Here, we report the discovery of
the stratigraphically youngest in situ dinosaur
specimen: a ceratopsian brow horn found in a
poorly rooted, silty, mudstone floodplain deposit
located no more than 13 cm below the palynologi-
cally defined boundary. The K-T boundary is
identified using three criteria: (i) decrease in
Cretaceous palynomorphs without subsequent
recovery, (ii) the existence of a ‘fern spike’, and
(iii) correlation to a nearby stratigraphic section
where primary extraterrestrial impact markers
are present (e.g. iridium anomaly, spherules,
shocked quartz). The in situ specimen demon-
strates that a gap devoid of non-avian dinosaur
fossils does not exist and is inconsistent with the
hypothesis that non-avian dinosaurs were extinct
prior to the K-T boundary impact event.
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1. INTRODUCTION

The temporal mode of the Cretaceous—Tertiary (K-T)
extinction, during which many groups of organisms,
including non-avian dinosaurs, went extinct, has been
hotly debated since Alvarez er al. [1] proposed the extra-
terrestrial impact hypothesis. Whereas the presence of
an impact is now generally accepted [2], it remains
unclear whether non-avian dinosaurs gradually went
extinct prior to the impact, as the result of climate or
sea-level change [3], or suddenly went extinct as the
direct, catastrophic result of the impact (e.g. [4]).
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Numerous studies have reported a terrestrial vertebrate
fossil-barren zone in the uppermost Cretaceous of the
Western Interior of North America, although they
differ in their interpretations of whether this is a real
phenomenon [5—8] or owing to the incomplete nature
of the fossil record [4,9—11]. This barren zone, coined
the ‘3 m gap’ [12], lies directly below the K-T bound-
ary. The lack of dinosaur fossils in this zone has been
used by some [5,12—15] as evidence for gradual extinc-
tion of non-avian dinosaurs.

Identification of the K—T boundary requires elaborate
laboratory analyses. Therefore, most surface-collecting
studies, with the exceptions of Pearson ez al. [10,11],
lack precise stratigraphic control relative to the K-T
boundary. Traditionally, most studies plot dinosaur
localities relative to the time-transgressive top of the
Hell Creek Formation. However, recent palynological
studies have demonstrated that the K—T boundary actu-
ally lies anywhere from —5 to 4+3 m relative to the contact
and, therefore, rarely coincides with the formation con-
tact [16—18]. The only Hell Creek studies with precise
stratigraphic control [10,11] were able to constrain the
fossil-barren zone using a non-avian dinosaur fossil
found 1.76 m below the palynologically identified K—T
boundary. Although these studies reduced the size of
the gap, a fossil-barren zone below the K—T boundary
still persists.

Several explanations have been put forth for the
putative presence of a fossil-barren zone directly below
the K—T boundary. Retallack [19] argued it was the
result of a diagenetic overprint caused by impact-derived
acid rain that dissolved bones below the K—T boundary.
Others (e.g. [20]) attributed the gap to the Signor—Lipps
effect [21], and concluded that extinction patterns could
not be accurately resolved (see also [22]). The gap has
also been used to infer that dinosaurs were already extinct
before the K—T boundary [5,12—15]. This putative gap
continues to fuel debate regarding the extinction of
non-avian dinosaurs at the end of the Cretaceous
[4,9,10,14,23,24].

2. METHODS

A brow horn, approximately 45 cm long, from a horned dinosaur
(Ceratopsidae), was found in the latest Cretaceous (Maastrichtian)
Hell Creek Formation of southeastern Montana (figure 1a) along a
hill informally called Camel Butte. A stratigraphic section (Section
no. 190) was dug less than 2 m from the specimen where all pertinent
sedimentological information was recorded (figure 15). To determine
the placement of the K—T boundary, palynological samples were col-
lected above and below the ceratopsian horn at sub-decimetre
resolution from individual lithological units separated by noticeable
sedimentological changes (figure 2). Samples were sent to Global
Geolabs Ltd., Alberta, Canada for preparation. A series of three
palynomorph counts were performed on each sample: relative abun-
dance, presence/absence and characterization of palynofacies (see
Bercovici et al. [25] for details). Individual palynomorph taxonomic
count results are provided as electronic supplementary material,
table S1.

3. RESULTS

A ceratopsian brow horn was found 125 cm below the
Hell Creek—Fort Union Formation contact in poorly
rooted, silty mudstone interpreted as an overbank deposit
(figure 2). Earliest Palacocene, Puercan 1 mammals (e.g.
arctocyonid condylarths) and a rich assemblage of other
vertebrates (e.g. turtles, crocodilians, osteichthyians)
occur 29 cm above the formation contact. The rela-
tive abundance of typical Cretaceous palynomorphs
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Figure 1. (a) Geological map showing the placement of the two localities discussed in the text. (b) Photo of the Camel Butte K-T
boundary section showing the position of the palynologically defined K—T boundary and the ¢z situ non-avian dinosaur (Ceratopsidae)
brow horn. Abbreviations: Kp: Pierre Shale Fm., Kf: Fox Hills Fm., Kh: Hell Creek Fm., Tl: Fort Union Fm., Tp: Slope Fm., Tb:
Bullion Creek Fm., QTu: Quaternary and upper Tertiary, Qor: Holocene. Geographic coordinates are given as a 10 km UTM grid.
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Figure 2. Sedimentological, palynological and vertebrate palaeontological data from the Mud Buttes (no. 171) and Camel
Butte (no. 190) K-T boundary sections. The non-avian dinosaur specimen was found 13 cm below the Camel Butte K-T
boundary section (see §4 for justification of the placement of the boundary). Arrows indicate levels where palynological samples
were collected. Appearance data (first—FAD; last—ILAD) for vertebrates are indicated for the Camel Butte section.
Abbreviations: Ir: iridium anomaly; PU1: Puercan 1.
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(K-taxa) drops significantly from 14% in sample 190-1 to
1-3% in the overlying samples. A ‘fern spike’ is also
identified starting at sample 190-2, where the assemblage
consists of as much as 80% ferns (figure 2; electronic
supplementary material, table 1). Based on these
measurements, placement of the K—T boundary is not
higher than 13 cm above the non-avian dinosaur
specimen.

4. DISCUSSION

Placement of the K-—T boundary at Camel Butte is
inferred using three lines of evidence (figure 2). First,
a major decrease in Cretaceous palynomorph taxa with-
out subsequent recovery [25] indicates the demise of
Mesozoic floras. Second, the correlated development
of a “fern spike’, as described from K-T boundary sec-
tions worldwide and interpreted as the recovery by
pioneering plants of terrestrial ecosystems devastated
by the asteroid impact [26]. Third, the K-T boundary
at Camel Butte is established through correlation to the
nearby Mud Buttes (Section no. 171), from which an
iridium anomaly has been reported [17]. Few K-T
boundary sections in the Western Interior preserve the
primary markers (e.g. iridium anomaly, spherules,
shocked quartz) of the Chicxulub impact event [2],
and correlation to such sections is necessary. Corre-
lation between the Camel Butte and Mud Buttes
sections is made possible by the identification of a fresh-
water ponding event in the lowermost Palaeocene at
both sections, which is characterized by a 1-2 m thick
series of massive mudstones devoid of vertebrate fossils
and by the proliferation of freshwater taxa (algal cysts
such as Pediastrum sp., Schizophacus sp. and the aquatic
monocot Penetetrapites sp., which are often preceded by
mosses, Stereisporites sp.).

The dinosaur specimen was found 13 cm below the
K-T boundary in a poorly rooted mudstone overbank
deposit, indicating that it was not reworked, but auto-
chthonous; unlike channel sands, which commonly
rework and concentrate vertebrate specimens, fossils
found in overbank deposits are unlikely to have been re-
deposited from older sediments [27,28]. This, along
with the placement of the boundary, indicates the
ceratopsian brow horn represents the stratigraphically
youngest iz situ non-avian dinosaur.

Discovery of this dinosaur locality demonstrates that
a Cretaceous ‘3 m gap’ does not exist and is inconsist-
ent with the hypothesis that non-avian dinosaurs were
extinct prior to the K-T boundary impact event.
Although channel deposits must have been deposited
during the K-T event, we are confident that it is
highly improbable to find a boundary section in this
facies and to recover the dinosaurian fossils strictly
associated with such deposits [29]. We therefore pre-
dict that future fieldwork will identify additional
overbank-associated dinosaur faunas near the top of
the Cretaceous, but this facies bias will prohibit finding
channel-associated faunal elements close to the bound-
ary. While our data indicate that an Upper Cretaceous
gap does not exist, an approximately 125 cm section
post K—T impact in the lowermost Palacocene com-
pletely devoid of fossils is present. Additional
fieldwork and high-resolution stratigraphic analyses
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are needed for this important time interval to recon-
struct the conditions on Earth immediately after the
asteroid impact.
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Vajda and two additional reviewers improved an earlier
draft of this manuscript. Funding was provided by the Yale
Peabody Museum of Natural History and a National
Science Foundation Graduate Research Fellowship to T.R.L.
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